

Messverstärker GSV-15KL4

Artikelnummer: 4272

Besondere Merkmale

- Klemmenkasten für den Anschluss von bis zu 4 Wägezellen
- Schutzart IP66
- Ausgangssignal -10V...+10V oder 4...20mA konfigurierbar
- Nullsetzeingang über digitalen Eingang
- Autoscale Funktion zur automatischen Anpassung der Eingangsempfindlichkeit
- 2 Schwellwertschalter, potentialfrei

Der Klemmenkasten mit integriertem Messverstärker GSV-15KL4 eignet sich zum Anschluss von Sensoren mit Dehnungsmessstreifen, wie z.B. Kraftsensoren, Drehmomentsensoren, Dehnungssensoren und Wägezellen.

Einsatzgebiet ist die Siloverwiegung mit Wägezellen oder Dehnungsaufnehmern.

Für die Parallelschaltung von bis zu 4 Wägezellen oder 4 Dehnungsaufnehmern einer Wiegeeinrichtung stehen 4 Klemmleisten "RM5" zur Verfügung.

Der Klemmkasten mit den Abmessungen 220mm x 120mm x 81mm ist in der Schutzart IP66 ausgeführt.

Die integrierte Messelektronik vom Typ "GSV-15HSW" verfügt über zwei Schwellwertausgänge, die über Codierschalter in 10% Stufen eingestellt werden können.

Über einen digitalen Eingang oder über einen Tastschalter kann ein automatischer Nullabgleich ausgelöst werden. Der Nullpunkt wird in einem nichtflüchtigen Speicher gesichert.

Mit der "Scale-Funktion" kann eine beliebige Eingangsgröße im Bereich zwischen 0,2 mV/V und 3,5 mV/V auf eine analoge Ausgangsspannung von 10V bzw. 20mA skaliert werden. Die Scale Funktion wird ausgelöst über einen Tastschalter oder über den digitalen Eingang "Scale". Durch einen Codierschalter kann eingestellt werden, ob Scale bei voller Belastung oder bei einer Teillast durchgeführt werden soll: Für die Scale Funktion können Eingangssignale von 10% bis 100% in 10% Stufen gewählt werden.

Durch den integrierten digitalen Filter wird insbesondere bei niedrigen Frequenzen von 5...105 Hz ein stabiles, rauscharmes und nullpunktstabiles Ausgangssignal gebildet, auch bei hohen Verstärkungen von niedrigen Eingangssignalen von z.B. 0,2 mV/V.

Die Auflösung am Analogausgang beträgt 4096 Teile.

Datenblatt GSV-15KL4

Werksseitig ist die Abtastrate auch auf 1000 Hz einstellbar.

Mit Hilfe von Steckbrücken kann der Analogausgang als Strom- oder Spannungsausgang konfiguriert werden.

Stand: 11.11.2024

Technische Daten		
Basisdaten		Einheit
Abmessungen	220 x 142 x 81	mm³
Anschluss	Schraubklemme	
Kanalzahl	1-Kanal	
Funktionen	Tara, Scale	
Eingang analog		Einheit
Eingangsempfindlichkeit-stufenlos von	0.2	mV/V
Eingangsempfindlichkeit-stufenlos bis	3.5	mV/V
Ausgang analog		Einheit
Anzahl der Analogausgänge	1	
Spannungsausgang von	-10	V
Spannungsausgang bis	10	V
Ausgangswiderstand-Spannungsausgang	33	Ohm
Stromausgang von	4	mA
Stromausgang bis	20	mA
Maximaler Bürdewiderstand - Stromausgang	300	Ohm
Genauigkeitsdaten		Einheit
Genauigkeitsklasse	0,1%	
Temperatureinfluss auf den Nullpunkt	0.05	%FS/10°C
Temperatureinfluss auf die Empfindlichkeit	0.01	%RD/10°C
Auflösung	16	Bit

Messfrequenz

Einheit

Datenblatt GSV-15KL4

Versorgung		Einheit
Versorgungsspannung von	11	V
Versorgungsspannung bis	28	V
DMS-Brückenspeisung	5	V

Montage

Anschlussbelegung

4x Sensoranschluss, 7polige Klemmleiste

Kennzeichnung	Abkürzung	Bezeichnung	alternative Bezeichnungen im Datenblatt der Wägezelle
Sh.	GND	Masse, Schirm	shield, ground
E -	- US	negative Brückenspeisung	- excitation, - input, E-
S -	- UF	negative Fühlerleitung	- sense, S-
S+	+ UF	positive Fühlerleitung	+ sense, S+
E+	+ US	positive Brückenspeisung	+ excitation, + input, E+

0+	+ UD	positiver Sensorausgang	+output
0 -	- UD	negativer Sensorausgang	- output

Die Klemmen für die Fühlerleitungen bleiben unbenutzt, wenn die Wägezellen keine 6-Leitertechnik haben. Die vier Klemmenleisten sind parallelgeschaltet. Es können maximal vier Wägezellen mit mindestens 350 Ohm Anschlusswiderstand angeschlossen werden.

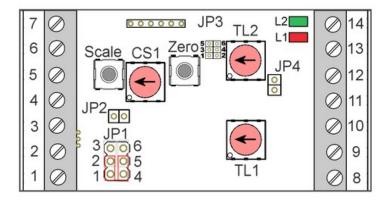
Anschlüsse für Eckenabgleich

Der Eckenabgleich kann bei Bedarf mit Hilfe von Trimmern oder mit Festwiderständen durchgeführt werden. Der Eckenabgleich erfordert spezielle Kenntnisse im Waagenbau.

Im Auslieferzustand ist der Eckenabgleich deaktiviert: Jumperposition ist Rf UND die Lötverbindung zwischen den Lötstiften ist geschlossen.

Jumperposition	Funktion
Rf.	In dieser Position wird ein Abgleichwiderstand in Serie zur Brückenspeisung geschaltet. Der Abgleichwiderstand kann bei Bedarf auf die Lötstifte angelötet werden. Zwischen den Lötstiften befindet sich eine Lötbrücke. Bei geschlossener Lötverbindung ist der Abgleichwiderstand 0 Ohm. Die Lötbrücke muss geöffnet werden, damit die Brückenspeisung über den

	Abgleichwiderstand verringert wird. Ohne Lötbrücke und ohne Abgleichwiderstand wird die Wägezelle der entsprechenden Klemmleiste nicht mit Speisespannung versorgt.
Trim.	In dieser Position wird ein Trimmer in Serie zur Brückenspeisung geschaltet. Der Trimmer ist unmittelbar über der Klemmleiste angeordnet.


1x 10-polige Klemmleiste

Klemme	Bezeichnung	Abkürzung	Beschreibung
1	24V DC	+UB	Betriebsspannung 11V DC 28V DC
2	Ground	GNDB	Masse Betriebsspannung
3	Signal out	UA	Analogausgang - 10V+10V bzw. 4mA20mA
4	Signal ground	GNDA	Masse Analogausgang
5	Zero setting	Zero	Digitaler Eingang 11V DC 28V DC "Zero"

6	Scale setting	Scale	Digitaler Eingang 11V28V "Scale"
7	SP1a	SW1a	Schaltausgang 1a
8	SP1b	SW1b	Schaltausgang 1b
9	SP2a	SW2a	Schaltausgang 2a
10	SP2b	SW2b	Schaltausgang 2b

Anordnung der Taster und Wahlschalter

Funktion der Taster und Wahlschalter

JP2	2-3 und 5-6: Spannul Öffnen: Sperren der ,		
JP1	1-2 und 4-5: Stromausgang	Strom	Spannung
	Schließen von	3 D 6 2 D 5 1 D 4	3 JP1 6 2 D 5 1 JP 4

	Funktion am Taster auf der Platine
JP3	Öffnen von 1-2: Sperren der "Zero"- Funktion am Taster auf der Platine Schließen von 3-4: Schwellwerte werden invertiert Schließen von 5-6: default (Herstellen der Werkseinstellungen)
JP4	Öffnen: Einschalten des Maximalwert-Modus
Scale	Betätigung (>2s) löst "Scale"- Funktion aus
Zero	Betätigung (>1s) löst "Zero"- Funktion aus
CS1	Wahlschalter zur Auswahl des Prozentanteils des Messbereiches, bei dem die "Scale"-Funktion durchgeführt wird. Einstellung in 10% Schritten von 10% bis 100%.
TL1	Wahlschalter für Schaltausgang 1 zur Auswahl des Schwellwertes in Prozent des Messbereiches. Einstellung in 10% Schritten von 10% bs 100%
TL2	Wahlschalter für Schaltausgang 2 zur Auswahl des Schwellwertes in Prozent des Messbereiches. Einstellung in 10% Schritten von

	10% bs 100%
--	-------------

Leuchtdioden

L2	grün, Dauerlicht: grün: Blinken:	Anzeige der Betriebsbereitschaft; Schaltausgang 2 aktiv, Schwellwert 2 überschritten
L1	rot: Blinken rot Dauerlicht	Schaltausgang 1 aktiv, Schwellwert 1 überschritten Fehleranzeige: Scale-Funktion wurde ohne Last oder bei negativer Last ausgelöst, oder Messbereich wurde überschritten, oder Scale oder Zero Eingang ist aktiv;

Hinweise:

1.

Die Position der Wahlschalter wird nur beim Einschalten der Betriebsspannung übernommen. Nach einer Veränderung muss Aus- und Eingeschaltet werden.

2.

Die Steckbrücken JP2 und JP3 müssen aktiv sein, sonst sind die Scale-Funktion und die Zero-Funktion gesperrt.

3.

Die Position "0" der Wahlschalter CS1, TL1 und TL2 entspricht 100%. Die Positionen "1" bis "9" entsprechen 10% bis 90%.

4.

Im Auslieferungszustand ist die eingestellte Eingangsempfindlichkeit 2 mV/V und Tara 0 mV/V, dies entspricht den Werkseinstellungen.

Bedienung des GSV-15HSW

Der Messverstärker GSV-15HSW liefert wahlweise analoges Ausgangssignal von -10,0V bis 10,0V oder 4mA...20mA. Die Eingangsempfindlichkeit ist im Auslieferzustand 2 mV/V..

Die Eingangsempfindlichkeit (der Messbereich) lässt sich über die "Scale-Funktion" anpassen.

Nullsetzfunktion (Zero)

Durch Anlegen eines Steuerimpulses am "Zero" -Eingang wird das Ausgangssignal automatisch auf 0,0V abgeglichen. Der Steuerimpuls muss mindestens 1s high und dann 100 ms low sein. Tara funktioniert im Bereich von 0.0 mV/V bis 3.5 mV/V.

Skalierfunktion (Scale)

Der Messverstärker verfügt über eine Skalierfunktion. Durch einen High-Pegel am "Scale-Eingang" wird das aktuell anliegende Messsignal auf 10,0V bzw. 20mA skaliert, bzw. auf den prozentualen Anteil des Ausgangssignals, der mit dem Wahlschalter "CS1" gewählt wurde. Vor dem Auslösen der Scale-Funktion muss der Sensor im unbelastetem Zustand tariert werden. Anschließend wird der Sensor mechanisch beansprucht. Durch Anlegen eines Steuerimpulses am "Scale" -Eingang oder durch Betätigung der "Scale"-Taste wird das Ausgangssignal automatisch skaliert. Der Steuerimpuls muss mindestens 2s high und dann 100 ms low sein. Die Skalierung des Messverstärkers funktioniert nur im positivem Messbereich.

Konfigurieren der Scale Funktion

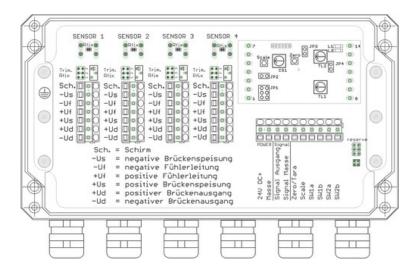
Das Skalieren des Endwerts kann auch mit weniger als 100% des Messbereiches erfolgen.

Der Anteil der Kalibrierlast vom Messbereich kann mit dem Wahlschalter "CS1" in 10% - Schritten eingestellt werden.

Schwellwert

Der Schwellwertschalter reagiert beim Überschreiten des Schwellwertes.

Die potentialfreien Schaltausgänge "a" und "b" werden bei Überschreiten des Schwellwertes elektrisch verbunden. Bei gestecktem JumperJP3 Pin3 und 4 werden diese entsprechend geöffnet.


Der Standardmäßig eingestellte Schwellwert beträgt 90% des Messbereichs. Über 90% des Messbereichs wird der Schwellwertausgang auf Masse geschaltet. Sinkt die Dehnung unter 89%, so schaltet der Ausgang auf hochohmig.

Konfigurieren der Schwellwert-Funktion

Die Schwellen der Schwellwertschalter 1 und 2 können jeweils in 10% Schritten mit den Wahlschaltern TL1 bzw. TL2 eingestellt werden.

Eckenabgleich

Der Klemmenkasten gestattet die Dämpfung der Sensoren 1 bis 4 mit jeweils individuellen Vorwiderständen. Der Vorwiderstand wird durch Öffnen der Lötbrücke Rf in der Leitung +Us wirksam. Über eine Pfostenfeldleiste kann ausgewählt werden, ob der Spindeltrimmer oder ein Festwiderstand verwendet wird.

Datenblatt GSV-15KL4

Position der Steckbrücke für die Verwendung eines (1 kOhm)

Position der Steckbrücke für die Verwendung eines Festwiderstandes zwischen der linken und rechten, zweipoligen Stiftleiste.

Trim. Rf.

Stand: 11.11.2024