

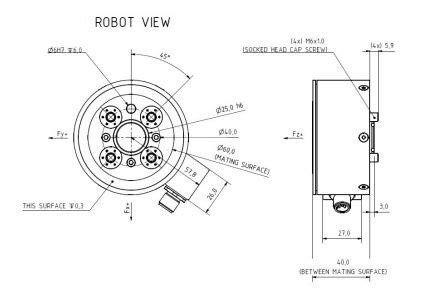
6-Achsen Kraft-Momenten-Sensor F6D80-40e 100N/10Nm

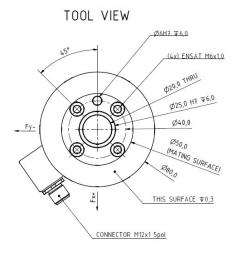
Artikelnummer: 8590

Der Mehrkomponenten-Sensor F6D80 wird zur Kraft- und Drehmomentmessung in drei zueinander senkrechten Achsen eingesetzt.

Der Mehrkomponenten-Sensor F6D80 ist mit Befestigungsflanschen nach DIN EN ISO 9409-1 für Industrieroboter ausgestattet. Der Messflansch des Sensors enthält Gewindebohrungen M6 auf dem gleichen Teilkreis. Der Kraft- / Momenten Sensor F6D kann ohne zusätzliche Adapter an den Robotik Flansch montiert werden und ist dadurch im Vergleich zu den Sensoren der Serie K6D besonders flach und leicht.

Die Auswertung der Kraft- und Momentenbelastung erfolgt mit einer integrierten Elektronik vom Typ GSV-6.


Die Sensoren sind aus einer Aluminium Legierung gefertigt.


Unser Partner IPR – Intelligente Peripherien für Roboter GmbH bietet Lösungen für Anwendungen der Kraft-/ Momentensensoren.

Stand: 18.12.2024

Technische Zeichnung

Technische Daten

Basisdaten		Einheit
Тур	6-Achsen Kraftsensor	
Kraftrichtung	Zug / Druck	
Nennkraft Fx	100	N
Nennkraft Fy	100	N
Nennkraft Fz	200	N
Krafteinleitung	Innengewinde	
Abmessung 1	4xM6	
Sensor Befestigung	Durchgangsbohrung	
Gebrauchskraft	300	%FS
Nennmessweg	0.05	mm
Verdrillung bei Fs	0.04	rad
Material	Aluminium-Legierung	
Höhe	40	mm
Länge oder Durchmesser	80	mm
Nenndrehmoment Mx	10	Nm
Nenndrehmoment My	10	Nm
Nenndrehmoment Mz	10	Nm
Bruchlast	600	%FS

Elektrische Daten		Einheit
Eingangswiderstand	1000	Ohm
Toleranz Eingangswiderstand	50	Ohm
Ausgangswiderstand	1000	Ohm
Toleranz Ausgangswiderstand	50	Ohm
Isolationswiderstand	2	GOhm
Nennbereich der Speisespannung von	2.5	V
Nennbereich der Speisespannung bis	5	V
Gebrauchsbereich der Speisespannung von	1	V
Gebrauchsbereich der Speisespannung bis	10	V
Nullsignal	1	mV/V
Nennkennwert	0.4	mV/V / FS
Exzentrizität und Übersprechen		Einheit

Genauigkeitsdaten			Einheit
Genauigkeitsklasse	1		
relative Linearitätsabweichung	0.1		%FS
relative Nullsignalhysterese	0.1		%FS
Temperatureinfluss auf das Nullsignal	0.1		%FS/K
Temperatureinfluss auf den Kennwert	0.05		%RD/K
Relatives Kriechen	0.1		%FS
relative Spannweite	0.5		%FS
Messfrequenz			Einheit
Datenfrequenz von		10	Hz
Datenfrequenz bis		800	Hz
Abtastfrequenz		12	kHz

Versorgung		Einheit
Versorgungsspannung von	18	V
Versorgungsspannung bis	28	V
Stromaufnahme von	100	mA
Stromaufnahme bis	250	mA

Umweltdaten		Einheit
Nenntemperaturbereich von	-10	°C
Nenntemperaturbereich bis	70	°C
Gebrauchstemperaturbereich von	-10	°C
Gebrauchstemperaturbereich bis	85	°C
Lagertemperaturbereich von	-10	°C
Lagertemperaturbereich bis	85	°C
Schutzart	IP64	

Abkürzungen: RD: Istwert ("Reading"); FS: Endwert ("Full Scale"); Für die Ermittlung der Kräfte Fx, Fy, Fz und Momente Mx, My, und Mz aus den 6 Messkanälen, und zur Kompensation des Übersprechens ist die Anwendung einer Kalibriermatrix erforderlich. Die Kalibrierdaten werden für den Sensor individuell ermittelt und dokumentiert.

Der Messfehler durch Übersprechen wird durch die Angabe der erweiterten Messunsicherheit (k=2) für die Kräfte Fx, Fy, Fz, und Momente Mx, My,

Mz für den Sensor individuell ausgewiesen.

Montage

Anschlussbelegung

Signal	Bezeichnung	Aderfarbe	PIN
CAN_GND	Masse CAN	braun	1
+24V	Betriebsspannu ng 24V	weiß	2
GND_24V	Masse Betriebsspannu ng	blau	3

CAN_H	Can High	schwarz	4
CAN_L	CAN Low	grau	5

Kalibriermatrix

Die Kalibriermatrix enthält 36 Kalibrierfaktoren zur Berechnung der Kräfte und Momente aus den 6 Ausgangssignalen des Kraftsensors. Eine Labview vi steht zur Verarbeitung der Kalibriermatrix zur Verfügung.

Messverstärker

Der Messverstärker GSV-8DS oder GSV-8AS ist mit einem 24-poligen Steckverbinder zum Anschluss eines 6-Achsen Sensors vorbereitet. Mit der Software GSVmulti werden die mechanischen Kräfte und Momente werden aus den 6 Ausgangsspannungen der einzelnen Messkanäle mit der Kalibriermatrix verrechnet.

Software

Die Software GSVmulti ist im Lieferumfang mit Messverstärkern GSV-8 enthalten. Die Software gestattet die Anwendung der Kalibriermatrix und die Verschiebung des Kordinatensystems zur Darstellung der Momente um einen frei wählbaren Bezugspunkt.

Zur Erstellung eigener Software steht ein Labview VI zur Verfügung.

Montagehinweis

Die Krafteinleitung erfolgt auf einem Kreisring (Ø80-Ø40) auf den Stirnseiten des Sensors. Die Fläche innerhalb des Kreisrings bleibt unbelastet.

Eine Zentrierbohrung Ø6 dient zur Sicherung der Winkellage.

Eine Zentrierbohrung Ø6 dient zur Sicherung der Winkellage.

4x M6 Außengewinde zur Montage an Roboterflansch (wird mit Inbusschlüssel von der Werkzeugseite her montiert, die Schrauben sind im F6D Sensorintegriert, unverlierbar)

4x M6 Innengewinde zur Montage des Werkzeugs (dieser Flansch entspricht wieder dem Roboterflansch)

Zusammenfassung: Der Sensor hat einmal M6 Innengewinde und einmal M6 Außengewinde).

Robotik Lösungen von IPR

Stand: 18.12.2024

Unser Robotik Partner IPR bietet Lösungen für Anwendungen der Kraft-/ Momentensensoren in den Bereichen

- Montage und Handhabungstechnik
- Maschinenbeladung
- Gießerei und Schmiede
- Hohlraumkonservierung
- Dichten und Dämmen
- Lack und Paint
- Services

IPR - Intelligente Peripherien für Roboter GmbH

Jakob-Dieffenbacher-Str. 4/2 75031 Eppingen Deutschland

T: +49 7262 9239-100 F: +49 7262 9239-400 M: <u>info@iprworldwide.com</u> W: <u>www.iprworldwide.com</u>

Steifigkeitsmatrix

36.6 kN/mm	0.0	0.0	0.0	348 kN	0.0
0.0	36.6 kN/mm	0.0	-348 kN	0.0	0.0
0.0	0.0	357.9 kN/mm	0.0	0.0	0.0
0.0	-348 kN	0.0	199.0 kNm	0.0	0.0
348 kN	0.0	0.0	0.0	199.0 kNm	0.0
0.0	0.0	0.0	0.0	0.0	63.1 kNm

- Die Elemente mit der Einheit kN/mm beschreiben den Zusammenhang zwischen Kraft und Weg.
- Die Elemente mit der Einheit kNm beschreiben den Zusammenhang zwischen Drehmoment und Verdrillung.
- Die Elemente mit der Einheit kN beschreiben den Zusammenhang zwischen Drehmoment und Weg (Spalte 1 bis 3) bzw. den Zusammenhang zwischen Kraft und Verdrillung (Spalte 4 bis 6)

Stand: 18.12.2024