

6-Achsen Kraft-Momenten-Sensor K6D40 50N/5Nm/MP11

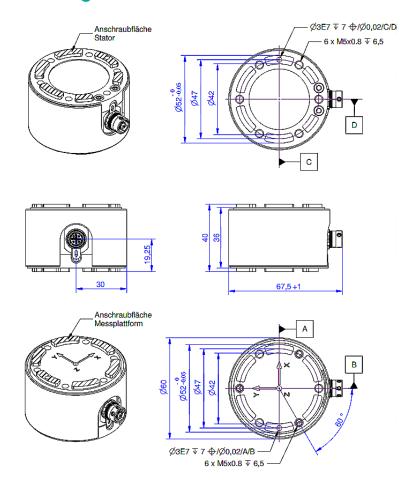
Artikelnummer: 9722

Besondere Merkmale

- Miniatur Kraft-/Momenten Sensor, Ø60 x 40 mm²
- Auflösung von Kräften ab 50 mN,
- Auflösung von Momenten ab 10 mNm
- Überlastsicherheit > 400 %
- Ausführung mit robustem Steckverbinder

Der Mehrkomponenten-Sensor K6D40 eignet sich für die Kraft- und Drehmomentmessung in drei zueinander senkrechten Achsen.

Aufgrund des geringen Gewichts des Mehrachsensensors von nur 160g (K6D40 200N/5Nm) bzw. 450g (K6D40 500N/20Nm) eignet er sich hervorragend für Anwendungen in der Robotik, wie z.B.


- Kollisionserkennung
- "Teach-In"
- Anwesenheits- bzw. Fehlererkennung
- Kraft- bzw. Momentengesteuerte Bedienung
- Belastungsmessung in der Medizintechnik / Prothetik / Orthopädietechnik / Ganganalyse
- Messungen in der Sportmedizin
- Komfortmessungen / Ergonomiemessungen

Die Auswertung der Kraft- und Momentenbelastung erfolgt z.B. mit einem Messverstärker GSV-8DS SubD44HD oder GSV-8AS..Die Berechnung der 6 Lastgrößen ist z.B. über eine Windows-DLL oder über Labview möglich mit Hilfe eines bereitgestellten digitalen Kalibrierdokuments. Das Kalibrierdokument enthält die individuellen Kalibrierfaktoren und Fehlerkorrekturen des Sensors.

Der Sensor K6D40 200N/5Nm ist aus einer Aluminium Legierung mit einem Edelstahl-Gehäuse gefertigt. Der Sensor K6D40 500N/20Nm ist komplett aus Edelstahl gefertigt.

Technische Zeichnung

Technische Daten

Basisdaten		Einheit
Тур	6-Achsen Kraftsensor	
Kraftrichtung	Zug / Druck	
Nennkraft Fx	50	N
Nennkraft Fy	50	N
Nennkraft Fz	200	N
Krafteinleitung	Innengewinde	
Abmessung 1	6x M5x0,8	
Sensor Befestigung	Innengewinde	
Abmessung 2	6x M5x0,8	
Gebrauchskraft	400	% FS
Material	Edelstahl	
Höhe	40	mm
Länge oder Durchmesser	60	mm
Nenndrehmoment Mx	5	Nm
Nenndrehmoment My	5	Nm
Nenndrehmoment Mz	5	Nm
Grenzdrehmoment	300	% FS
Grenzbiegemoment	500	% FS

Elektrische Daten		Einheit
Eingangswiderstand	1000	Ohm
Toleranz Eingangswiderstand	10	Ohm
Ausgangswiderstand	1000	Ohm
Toleranz Ausgangswiderstand	10	Ohm
Isolationswiderstand	2	GOhm
Nennbereich der Speisespannung von	2.5	V
Nennbereich der Speisespannung bis	5	V
Gebrauchsbereich der Speisespannung von	1	V
Gebrauchsbereich der Speisespannung bis	5	V
Nullsignal von	-1.5	mV/V
Nullsignal bis	1.5	mV/V
Kennwertbereich von	0.2	mV/V
Kennwertbereich bis	0.45	mV/V

Exzentrizität und Übersprechen		Einheit
Übersprechen	1	%FS

Genauigkeitsdaten		Einheit
Genauigkeitsklasse	0,2	
relative Linearitätsabweichung	0.2	%FS
relative Nullsignalhysterese	0.2	%FS
Temperatureinfluss auf das Nullsignal	0.2	%FS/K
Temperatureinfluss auf den Kennwert	0.05	%RD/K
relative Spannweite	0.2	%FS
Umweltdaten		Einheit
Umweltdaten Nenntemperaturbereich von	-10	Einheit °C
	-10 70	
Nenntemperaturbereich von		°C
Nenntemperaturbereich von Nenntemperaturbereich bis	70	°C
Nenntemperaturbereich von Nenntemperaturbereich bis Gebrauchstemperaturbereich von	70 -10	°C °C
Nenntemperaturbereich von Nenntemperaturbereich bis Gebrauchstemperaturbereich von Gebrauchstemperaturbereich bis	70 -10 85	°C °C °C

Abkürzungen: RD: Istwert ("Reading"); FS: Endwert ("Full Scale"); Für die Ermittlung der Kräfte Fx, Fy, Fz und Momente Mx, My, und Mz aus den 6 Messkanälen, und zur Kompensation des Übersprechens ist die Anwendung einer Kalibriermatrix erforderlich. Die Kalibrierdaten werden für den Sensor individuell ermittelt und dokumentiert. Der Messfehler durch Übersprechen wird durch die Angabe der erweiterten Messunsicherheit (k=2) für die Kräfte Fx, Fy, Fz, und Momente Mx, My, Mz für den Sensor individuell ausgewiesen.

Anschlussbelegung

Kanal	Abkürzung	Bezeichnung	Aderfarbe	PIN
1	+Us	positive Brückenspeisung	gelb	14
	-Us	negative Brückenspeisung	grün	13
	+Ud	positiver Brückenausgang	weiß	1
	-Ud	negativer Brückenausgang	braun	5
2	+Us	positive Brückenspeisung	grau	15
	-Us	negative Brückenspeisung	schwarz	16
	+Ud	positiver Brückenausgang	rot	7
	-Ud	negativer Brückenausgang	rosa	6
3	+Us	positive Brückenspeisung	braun-blau	23
	-Us	negative Brückenspeisung	weiß-rot	24
	+Ud	positiver Brückenausgang	braun-rot	12
	-Ud	negativer Brückenausgang	weiß-rosa	4
4	+Us	positive Brückenspeisung	weiß-gelb	19
	-Us	negative Brückenspeisung	gelb-braun	20
	+Ud	positiver Brückenausgang	braun-grün	9
	-Ud	negativer Brückenausgang	weiß-grün	3
5	+Us	positive Brückenspeisung	weiß-grau	21
	-Us	negative Brückenspeisung	weiß-blau	22

	+Ud	positiver Brückenausgang	grau-braun	10
	-Ud	negativer Brückenausgang	rosa-braun	11
6	+Us	positive Brückenspeisung	grau-rosa	18
	-Us	negative Brückenspeisung	violett	17
	+Ud	positiver Brückenausgang	rot-blau	8
	-Ud	negativer Brückenausgang	blau	2
-	Schirm		transparent	n.c.

Schirm: verbunden mit Steckergehäuse;

Montage

Die Krafteinleitung erfolgt auf einem Kreisring /auf 6 Kreissegmenten Ø52mm – Ø42mm auf den Stirnseiten des Sensors. Die Fläche innerhalb des Kreisrings Ø42mm bleibt unbelastet. Der Aussenumfang der Kreissegmente kann zur Zentrierung verwendet werden. Eine Zentrierbohrung dient zur Sicherung der Winkellage.

Steifigkeitsmatrix

2.9 kN/mm	0.0	0.0	0.0	58.4 kN	0.0
0.0	2.9 kN/mm	0.0	-58,4 kN	0.0	0.0
0.0	0.0	16.2 kN/mm	0.0	0.0	0.0
0.0	-58.4 kN	0.0	4.7 kNm	0.0	0.0
58.4 kN	0.0	0.0	0.0	4.7 kNm	0.0
0.0	0.0	0.0	0.0	0.0	2,5 kNm

- Die Elemente mit der Einheit kN/mm beschreiben den Zusammenhang zwischen Kraft und Weg.
- Die Elemente mit der Einheit kNm beschreiben den Zusammenhang zwischen Drehmoment und Verdrillung.
- Die Elemente mit der Einheit kN beschreiben den Zusammenhang zwischen Drehmoment und Weg (Spalte 1 bis 3) bzw. den Zusammenhang zwischen Kraft und Verdrillung (Spalte 4 bis 6)