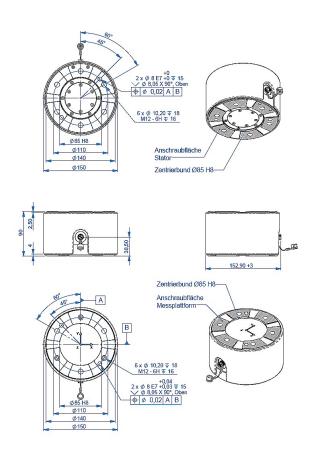


6-Achsen Kraft-Momenten-Sensor K6D150 2kN/200Nm/MP11

Artikelnummer: 10095


Mit dem Mehrkomponenten-Sensor K6D150 wird die Kraft- und Drehmomentmessung in drei zueinander senkrechten Achsen ermöglicht. Der Mehrkomponenten-Sensor K6D150 zeichnet sich durch einen großen Messbereich für Kräfte und Momente aus. Bei diesem Mehrkomponenten-Sensor der "zweiten Generation" wird ein Stabwerk eingesetzt, das die Kräfte und Momente direkt auf dem Teilkreis der Befestigungsgewinde aufnimmt. Dadurch werden die maximale Steifigkeit und der größtmögliche Messbereich für die Drehmomente erreicht. Die Krafteinleitung erfolgt auf den 1mm erhabenen Segmenten. Der Innendurchmesser der Segmente dient zur Zentrierung. Durch die segmentierte, ringförmige Stirnfläche wird eine optimale Krafteinleitung und damit eine bestmögliche Reproduzierbarkeit in der Größenordnung von ca. 0,1% erzielt. Der Mehrkomponenten-Kraftsensor eignet er sich hervorragend für Anwendungen in der Robotik, wie z.B.

- Kollisionserkennung
- "Teach-In"
- Anwesenheits- bzw. Fehlererkennung
- Kraft- bzw. Momentengesteuerte Bedienung
- Belastungsmessung in der Medizintechnik / Prothetik / Orthopädietechnik / Ganganalyse
- Messungen in der Sportmedizin
- Komfortmessungen / Ergonomiemessungen

Die Auswertung der Kraft- und Momentenbelastung erfolgt z.B. mit einem Messverstärker GSV-8DS.Der Sensor K6D150 2kN/200Nm und 10kN/1kNm ist aus einer Aluminium Legierung, der Sensor K6D150 30kN/3kNm ist aus hochfestem Edelstahl 1.4542 gefertigt.

Technische Zeichnung

Datenblatt K6D150 2kN/200Nm/MP11

Technische Daten

Basisdaten		Einheit		
Тур	6-Achsen Kraftsensor			
Kraftrichtung	Zug / Druck	Zug / Druck		
Nennkraft Fx	2	kN		
Nennkraft Fy	2	kN		
Nennkraft Fz	5	kN		
Krafteinleitung	Innengewinde			
Abmessung 1	6xM12x1,75			
Sensor Befestigung	Innengewinde			
Abmessung 2	6xM12x1,75			
Gebrauchskraft	300	%FS		
Material	Aluminium-Legierung	Aluminium-Legierung		
Höhe	90	mm		
Länge oder Durchmesser	150	mm		
Nenndrehmoment Mx	200	Nm		
Nenndrehmoment My	200	Nm		
Nenndrehmoment Mz	200	Nm		
Grenzdrehmoment	300	%FS		
Grenzbiegemoment	200	%FS		

Datenblatt K6D150 2kN/200Nm/MP11

Elektrische Daten		Einheit
Eingangswiderstand	350	Ohm
Toleranz Eingangswiderstand	10	Ohm
Ausgangswiderstand	350	Ohm
Toleranz Ausgangswiderstand	10	Ohm
Isolationswiderstand	2	GOhm
Nennbereich der Speisespannung von	2.5	V
Nennbereich der Speisespannung bis	5	V
Gebrauchsbereich der Speisespannung von	1	V
Gebrauchsbereich der Speisespannung bis	5	V
Nullsignal von	-0.05	mV/V
Nullsignal bis	0.05	mV/V
Nennkennwert	0.8	mV/V

Exzentrizität und Übersprechen		Einheit
Übersprechen	1	%FS

Datenblatt K6D150 2kN/200Nm/MP11

Genauigkeitsdaten		Einheit
Genauigkeitsklasse	0,2	
relative Linearitätsabweichung	0.1	%FS
relative Nullsignalhysterese	0.1	%FS
Temperatureinfluss auf das Nullsignal	0.1	%FS/K
Temperatureinfluss auf den Kennwert	0.01	%RD/K
Relatives Kriechen	0.1	%FS
relative Spannweite	0.5	%FS
Umweltdaten		Einheit
Umweltdaten Nenntemperaturbereich von	-10	Einheit °C
	-10 70	
Nenntemperaturbereich von		°C
Nenntemperaturbereich von Nenntemperaturbereich bis	70	°C
Nenntemperaturbereich von Nenntemperaturbereich bis Gebrauchstemperaturbereich von	70 -10	°C °C
Nenntemperaturbereich von Nenntemperaturbereich bis Gebrauchstemperaturbereich von Gebrauchstemperaturbereich bis	70 -10 85	°C °C °C

Abkürzungen: RD: Istwert ("Reading"); FS: Endwert ("Full Scale"); Für die Ermittlung der Kräfte Fx, Fy, Fz und Momente Mx, My, und Mz aus den 6 Messkanälen, und zur Kompensation des Übersprechens ist die Anwendung einer Kalibriermatrix erforderlich.

Die Kalibrierdaten werden für den Sensor individuell ermittelt und dokumentiert.

Der Messfehler durch Übersprechen wird durch die Angabe der erweiterten Messunsicherheit (k=2) für die Kräfte Fx, Fy, Fz, und Momente Mx, My, Mz für den Sensor individuell ausgewiesen.

Steifigkeitsmatrix

29.1 kN/mm	0.0	0.0	0.0	1308 kN/rad	0.0
0.0	29.1 kN/mm	0.0	-1308 kN/rad	0.0	0.0
0.0	0.0	137.7 kN/mm	0.0	0.0	0.0
0.0	-1308 kN/mm	0.0	216.3 kNm/rad	0.0	0.0
1308 kN/mm	0.0	0.0	0.0	216.3 kNm/rad	0.0
0.0	0.0	0.0	0.0	0.0	132.9 kNm/rad

- Die Elemente mit der Einheit kN/mm beschreiben den Zusammenhang zwischen Kraft und Weg.
- Die Elemente mit der Einheit kNm beschreiben den Zusammenhang zwischen Drehmoment und Verdrillung.
- Die Elemente mit der Einheit kN beschreiben den Zusammenhang zwischen Drehmoment und Weg (Spalte 1 bis 3) bzw. den Zusammenhang zwischen Kraft und Verdrillung (Spalte 4 bis 6)

Stand: 11.12.2024