

Bedienungsanleitung

GSV-3BT

Stand: 26.08.2015 Dokument: ba-gsv3bt

Tel.: +49 3302 78620 60

Fax: +49 3302 78620 69

Mail: info@me-systeme.de

Web: www.me-systeme.de

Inhaltsverzeichnis

DMS-Messverstärker GSV-3BT	3
Beschreibung	3
Abmessungen	4
Technische Daten	5
Messauflösung	7
Anschlussbelegung	7
Anschlüsse auf der Platinen-Oberseite	7
Anschlüsse auf der Platinen-Unterseite	8
Anschlussplan für Viertel- und Halbbrücken an GSV-3BT	8
Anschluss des Drehzahlgebers an GSV-3BT RS	
Anschluss von unsymmetrischen Vollbrücken an GSV-3BT	10
Messauflösung	11
Anschlussbelegung für externe Spannungsversorgung M8, 4-polig	11
Anschlussbelegung für Rundsteckverbinder M12, 5-polig	11
Schalterkonfiguration GSV-3BT M12	12
Anschlussplan für GSV-3BT M12	
Bestellvarianten	
Zulässige Hersteller	14
Wichtige Hinweise	
Mögliche Probleme	16

Tel.: +49 3302 78620 60

DMS-Messverstärker GSV-3BT

Messverstärker mit drahtloser Schnittstelle via Bluetooth®

Abbildung 2: GSV-3BT M12

Abbildung 1: GSV-3BT (Zubehör USB-Bluetooth Stick und Akku nicht im Lieferumfang

Beschreibung

Der Messverstärker GSV-3BT eignet sich zur drahtlosen Messdatenerfassung mit Dehnungsmessstreifen-Sensoren.

Der GSV-3BT eignet sich zum Anschluss von DMS-Vollbrücken und Halbbrücken. Für Viertelbrücken 350 Ohm besteht eine Anschlussmöglichkeit in Dreileitertechnik.

Die Datenübertragung erfolgt per Funk über den Bluetooth Standard 2.0+EDR mit Serial Port Profile (SPP). Die Reichweite beträgt 20m in Gebäuden bzw. bis zu 100m bei Sichtverbindung. Als Empfänger eignen sich handelsübliche Bluetooth-Dongle mit Widcomoder Toshiba Treibern, die das "serial-port-protocol" unterstützen.

Die Datenerfassung erfolgt mit der Software GSV Control. Es sind Datenraten von 1/s bis 1000/s möglich. Die interne Abtastrate des GSV-3BT beträgt 10000/s. Die Versorgung erfolgt über z.B. einen Lithium-Polymer-Akku.

Mit dem Öffnen der Schnittstelle des Anwendungssoftware wird das Modul eingeschaltet. Der Stromverbrauch beträgt weniger als 100mA. Im Ruhezustand liegt der Stromverbrauch unter 5mA.

Varianten:

Abmessungen

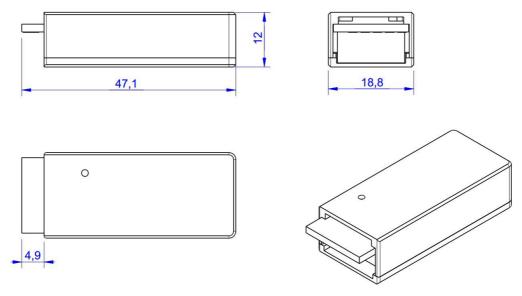


Abbildung: GSV-3BT

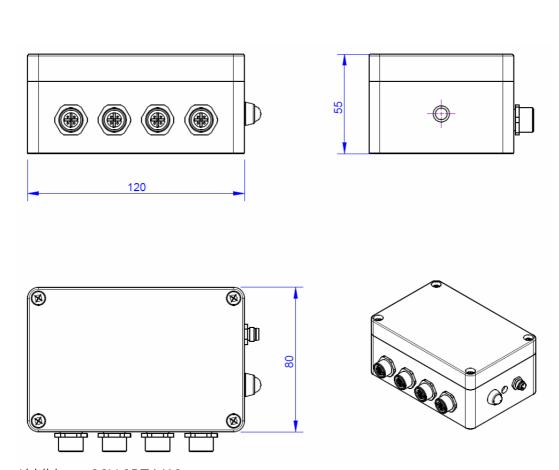
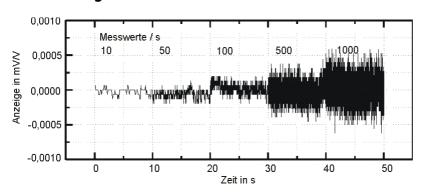


Abbildung: GSV-3BT M12

Technische Daten

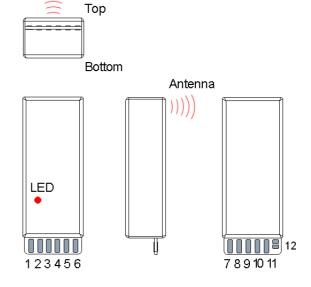
	GSV-3BT	Einheit
Genauigkeitsklasse Brückeneingang Drehzahleingang	0,1 0,5%	% %
Messbereich (v.E.)	2	mV/V
anschließbare Vollbrücken	1x 350 1x 5000	Ohm
Brückenspeisespannung	2,5	V
Eingangsimpedanz	>20 / 300pF	MOhm
Gleichtaktunterdrückung DC 100Hz	100 80	dB dB
Linearitätsabweichung	< 0,02	% v.E.
Temperatureinfluss auf den Nullpunkt pro 10K	< 0,01	% v.E.
Temperatureinfluss auf die Messempfindlichkeit pro 10K bezogen auf den Messwert	< 0,01	% v.S.
Ausgangsfilter digital Datenfrequenz Messfrequenz	FIR-Filter + MW-Filter 0,00 1220,00 76,80 Hz 10080,67	Hz Hz
Auflösung	16	Bit
Schaltausgang S1 Strombelastbarkeit:	TTL-Pegel active High 5	mA
Schaltausgänge/-eingänge RB0, RB6 Strombelastbarkeit:	TTL-Pegel active High 5	mA
Schnittstelle Format PIN	Bluetooth 2.0+EDR 38400 Baud, 8N1 0000	
Versorgungsspannung GSV-3BT Versorgungsspannung GSV-3BT M12	3,0 5,5 9,036	V
Stromaufnahme bei Nenn-Betriebsspannung im Sleep-Modus	<100 5	mA mA
Parameterspeicher	vier komplette Parameter-sätze im EEProm: letzte Einstellung,Hersteller- einstellung, User 1, User 2	
Nenntemperaturbereich	-10+65	°C


Lagertemperaturbereich	-40+85	°C
Abmessungen (L x B x H) GSV-3BT Abmessungen (L x B x H) GSV-3BT M12	47 x 18 x 12 120 x 55 x 80	mm x mm x mm
Schutzart (DIN 40 050)	IP 65 (bei entsprechender Abdeckung der Lötstellen)	
Gewicht Gsv-3BT Gewicht Gsv-3BT M12	14 360	g

Abkürzungen: v.E. (vom Endwert); v.S. (vom Sollwert). GSV-3BT RS für Drehzahlmessung;

Tel.: +49 3302 78620 60

Messauflösung



Das erreichbare Verhältnis Signal/ Rauschen hängt von den Umgebungsbedingungen (Kabellänge, Schirmung), von der eingestellten Datenrate und von der optional zugeschalteten FIR Filterung ab.

Die Grafik zeigt die Auflösung mit 1m Ans - Live Lebel Manne bereich 10-20/0/ FID Filter

ausgeschaltet.

Anschlussbelegung

Hinweise: Die Antenne darf nicht durch leitfähige Materialien oder Flüssigkeiten abgeschirmt werden. Die Status-LED zeigt an, ob eine Bluetooth Verbindung besteht.

Anschlüsse auf der Platinen-Oberseite

Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6
-Us	+Us	+Ud	-Ud	Us	GND
- Brücken-	+ Brücken-	+ Brücken-	- Brücken-	+3,0+5,5V	Masse
speisung	speisung	eingang	eingang		

Anschlüsse auf der Platinen-Unterseite

Pin 7	Pin 8	Pin 9	Pin 10	Pin 11	Jumper 12
GND	intern belegt	Т	S1	Aux	Halb-brücken-
Masse		Nullsetz-/	Schwellgeber-	Anschluss für	ergänzung
		Trigger-	Ausgang	Viertelbrücken	
		eingang			

Anschlussplan für Viertel- und Halbbrücken an GSV-3BT

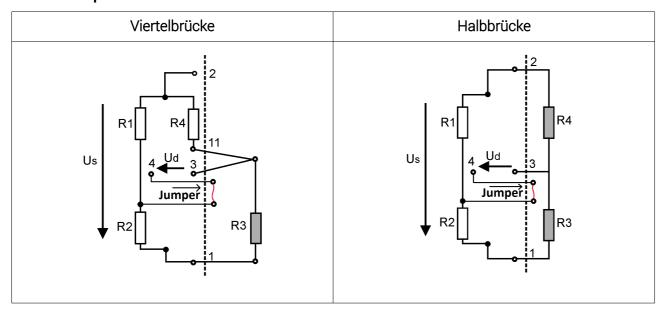


Tabelle 1: Anschlussplan für Viertel- und Halbbrücken an GSV-3BT

Die DMS Vollbrücke wird an den Pins 1, 2, 3, 4 (Jumper offen) angeschlossen, die Halbbrücke an den Pins 1,2,3 (Jumper geschlossen) und die Viertelbrücke an den Pins 1, 3, 11 (Jumper geschlossen).

Die Kalibrierung des Messverstärkers gilt für eine Vollbrücke mit 350 Ohm. Die internen Ergänzungswiderstände R1 und R2 sind 10kOhm und R4 ist 350 Ohm.

Anschluss des Drehzahlgebers an GSV-3BT RS

Mit dem Hallschalter HAL501 und einem Dauermagneten kann eine Drehzahlmessung über einen Luftspalt von 5...15mm realisiert werden.

Voraussetzung für die Erfassung eines Impulses zur Drehzahlmessung ist ein Wechsel der magnetischen Flussdichte von 20mT auf 4mT.

- Je nach Konfiguration überträgt der Messverstärker GSV-3BT RS entweder
- •das Drehmoment M bzw. das Ausgangssignal des Dehnungsmessstreifens,

Tel.: +49 3302 78620 60

- •die Drehzahl n in Umdrehungen pro Minute,
- •die Leistung $P = M \cdot 2 \cdot \pi \cdot n/60$ [P] = Watt; [M]=Nm;
- Die Übertragung des Messwertes erfolgt entweder
- •mit der eingestellten Messfreguenz,

•bei jedem magnetischen Impuls.

Wenn die Datenübertragung mit dem magnetischen Impuls getriggert wird, dann kann das Drehmoment übertragen werden, und auf der Statorseite kann aus der Anzahl der Messwerte pro Zeiteinheit die Drehleistung errechnet werden.

Durch die Auswahl der Einheit W (Watt) im Konfigurationsprogramm wird der Messverstärker konfiguriert auf Leistungsmessung, dabei ist zu beachten, dass zuvor die Empfindlichkeit des DMS-Eingangs in Nm eingestellt worden ist. Ebenfalls die Anzahl der Magnete am Drehzahl-Eingang muss richtig eingestellt werden.

Durch die Auswahl der Einheit rpm wird der Messverstärker auf Drehzahlmessung konfiguriert. Die Übertragung der Messwerte erfolgt beim GSV-3BT RS immer im Textformat. Die Skalierung des Drehzahleingangs ist fest auf 20000 eingestellt und kann nicht geändert werden. Die Anzahl der Magnete, die Impulse am Hallsensor erzeugen, kann mit Hilfe von gsvterm.exe eingestellt werden. Hierzu befindet sich in der Programmoberfläche auf Seite 2 der Menüpunkt "Sondereinstellungen".

Es werden maximal 100 Messwerte/s übertragen, die interne Abtastfrequenz ist 6000/s.

Hallschalter HAL501	Kabel, Farbe	GSV-3BT RS	Beschreibung
1	weiß	8	Vdd (5V, <5mA)
2	braun	7	GND
3	grün	11	Signal (TTL-Pegel)

Anstelle des Hallschalters HAL501 können andere Geber mit einer Leistungsaufnahme kleiner 5V, 5mA und einem Ausgangssignal mit TTL Pegel angeschlossen werden. Mit einem Stabmagnet NdFeB 20mmx10mmx4mm wird ein Arbeitsabstand von mindestens 10mm zwischen Hallschalter und Magnet erreicht.

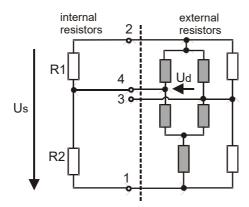

Anzahl Magnete	Drehzah	nlbereich in U/min	Reaktionszeit in A	Anzahl Umdrehungen
	Minimum	Maximum	Minimum	Maximum
1	18	36000	ca. 1	ca. 2
2	9	18000	ca. 1/2	ca. 1
4	4,5	9000	ca. 1/4	ca. 1/2
8	2,25	4500	ca. 1/8	ca. 1/4

Abbildung 3: Hallschalter HAL501 im TO92 Gehäuse, Aufsicht auf sensitive Fläche (zum magnetischen Südpol zugewandt)

Anschluss von unsymmetrischen Vollbrücken an GSV-3BT

Tel.: +49 3302 78620 60


Fax: +49 3302 78620 69

Abbildung 4: Anschlussplan für GSV-3BT QB für unsymmetrische Vollbrücken

Dehnungsmessstreifen Vollbrücken werden teilweise unsymmetrisch ergänzt mit Vorwiderständen zum Abgleich des Ausgangssignals und zur Kompensation des Temperaturgangs. Die Widerstände R1 und R2 der internen Ergänzungsschaltung des GSV-3BT QB bewirken dann einen Offset, der im Extremfall nicht mehr abgeglichen werden kann. In diesem Fall muss der Mittenabgriff eines zusätzlichen Spannungsteilers 10 kOhm an+Ud (Klemme 3) angeschlossen werden.

Messauflösung

Das erreichbare Verhältnis Signal/ Rauschen hängt von den Umgebungsbedingungen (Kabellänge, Schirmung), von der eingestellten Datenrate und von der optional zugeschalteten FIR Filterung ab. Die Grafik zeigt die Auflösung mit 1m Anschlusskabel, Messbereich ±2mV/V, FIR Filter ausgeschaltet.

Anschlussbelegung für externe Spannungsversorgung M8, 4-polig

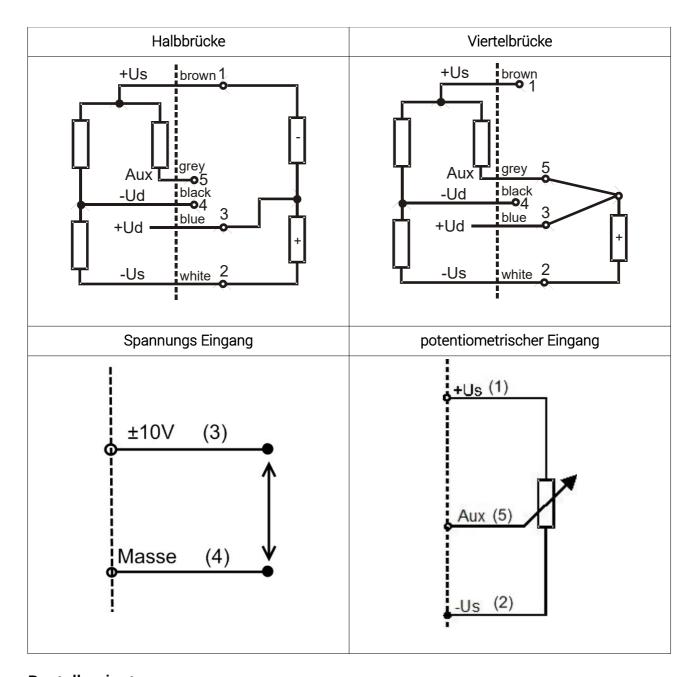
Über den 4poligen Rundsteckverbinder M8 kann eine externe Spannungsversorgung angeschlossen werden.

Pin	Funktion	Sensor-Aktor Kabel M8
1	Versorgungsspannung 928 V DC	braun
2	Akku 4,2V	weiß
3	GND Versorgungsspannung	blau
4	Akku GND	schwarz

Anschlussbelegung für Rundsteckverbinder M12, 5-polig

Belegung für DMS Sensoren

	Beschreibung (DMS)	Pin-Nr	Sensor-Aktor-Kabel
+Us	positive Brückenspeisung	1	braun
-Us	negative Brückenspeisung	2	weiß
+UD	positiver Brückenausgang	3	blau
-UD	negativer Brückenausgang	4	schwarz
AUX	Viertelbrücken- /Spannungs-Eingang, potentiometrischer Eingang	5	grau



Schalterkonfiguration GSV-3BT M12

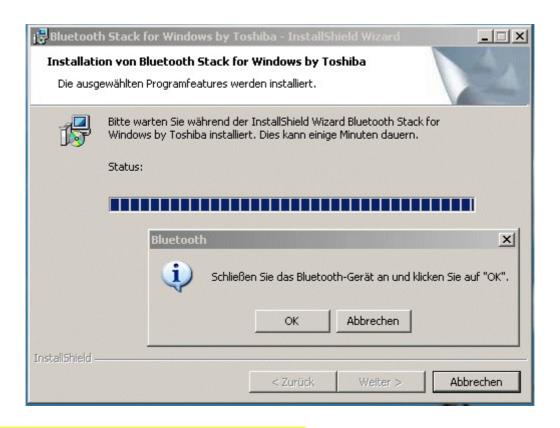
				Links	ks							Rechts	hts			
Eingang	1 braun	2 rot	3 orange	4 gelb	5 grün	6 blau	7 Iila	8 grau	9 braun	10 rot	11 orange	12 gelb	13 grün	14 blau	15 lila	16 grau
Vollbrücke	OFF	NO	OFF	OFF	OFF	OFF	ON	OFF	OFF	OFF	OFF	OFF	OFF	OFF	OFF	ON
Halbbrücke	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	NO	OFF	OFF	OFF	OFF	OFF	OFF	ON
Viertelbrücke 120 Ohm	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	NO	OFF	ON	OFF	OFF	OFF	OFF	ON
Viertelbrücke 350 Ohm	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	NO	OFF	OFF	NO	OFF	OFF	OFF	ON
Viertelbrücke 1000 Ohm	OFF	ON	OFF	OFF	OFF	OFF	ON	OFF	NO	OFF	OFF	OFF	ON	OFF	OFF	ON
potentiometrischer Wegsensor	NO	OFF	OFF	ON	ON	ON	OFF	OFF	OFF	ON	OFF	OFF	OFF	ON	OFF	ON
Spannung	ON	OFF	ON	OFF	ON	ON	OFF	ON	OFF	OFF	OFF	OFF	OFF	ON	OFF	OFF

Anschlussplan für GSV-3BT M12

Bestellvarianten

Тур	Beschreibung
GSV-3BT SD	Miniatur Ausführung, Lötanschluss
GSV-3BT RS	Miniatur Ausführung, Lötanschluss, Leistungsmessung
GSV-3BT M12	Gehäuste Ausführung mit Akku und Steckverbinder

Installation und Konfiguration der Bluetooth-Treiber


Zulässige Hersteller

Der störungsfreie Betrieb des Gerätes GSV-3BT wurde mit den Geräten und Treibern von "MSI" (Widcomm), von "Toshiba" und "BlueSoleil" (IVT) nachgewiesen.

Ebenso wurden gute Erfahrungen mit den Standard Treibern von Windows gemacht.

Wichtige Hinweise

Installieren Sie bitte erst die Software, **bevor** Sie den Bluetooth Dongle anschließen. Schließen Sie den Bluetooth Dongle erst an, wenn Sie von der Software dazu aufgefordert werden.

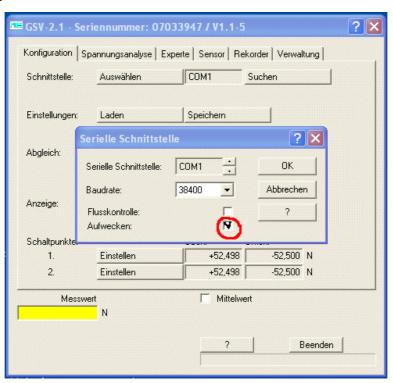
Verwenden Sie den Assistenten zur Konfiguration:

Stand: 26.08.2015

Tel.: +49 3302 78620 60

Mögliche Probleme

Beim ersten Start von GSV Control kann es vorkommen, dass die Schnittstelle des GSV-3BT nicht automatisch gefunden wird.


Bitte starten Sie in diesem Fall das Programm aus dem Startmenü und geben Sie als Parameter die Schnittstelle an:

Es wird empfohlen, erst die Bluetooth Verbindung zu starten, und dann die Anwendung GSVContol:

Wenn Bluetooth konfiguriert ist für "automatisches Starten der Verbindung", dann genügt das Öffnen und Schließen der seriellen Schnittstelle, um den GSV-3BT ein- bzw. auszuschalten.

Es muss allerdings die Checkbox "Aufwecken" aktiviert sein:

Es ist auch möglich, mit dem "Verbinden" der Bleutooth Geräte das Starten der Anwendung GSV.exe zu kombinieren. Entsprechende Einstellungen finden Sie unter "Optionen" oder "Konfiguration" der Bluetooth Verbindung.

Änderungen vorbehalten. Alle Angaben beschreiben unsere Produkte in allgemeiner Form. Sie stellen keine Eigenschaftszusicherung im Sinne des §459 Abs. 2, BGB, dar und begründen keine Haftung.